16 de out. de 2025

Lógica Matemática é destaque no NOSSO JORNAL.


“Para o professor do curso Carlos Magno Corrêa Dias, os profissionais do ramo das ciências exatas, que desejam produzir uma nova ferramenta ou uma nova tecnologia, somente poderão fazê-lo se adquirirem a capacidade de manipulação simbólica, de formalização e de transformação do raciocínio em cálculo lógico.”

O parágrafo precedente encontra-se registrado no artigo de divulgação intitulado “Lógica Matemática”, publicado no número 44, do “NOSSO JORNAL” do CEFET-PR (Centro Federal de Educação Tecnológica do Paraná), edição de outubro de 1995 (CEFET-PR. Lógica Matemática. Nosso Jornal, Curitiba, n. 44, p. 7, out. 1995.).

DIAS, C. M. C. - 2025

Publicado na seção VARIEDADES, o artigo faz a divulgação do Curso de Extensão enunciado como “Cálculo Proposicional em Lógica Matemática” que ministrei, em 20 horas, para Estudantes de Graduação e de Pós-Graduação do CEFET-PR e para Estudantes de Ciências Exatas de outras Instituições de Ensino Superior do país; tendo início lá em 02/10/1995.

Como observado, também, propus e coordenei o correspondente Projeto Institucional da Atividade de Extensão Universitária, a qual constituiu um marco na Instituição no Campo da Lógica Matemática haja visto ter sido uma das primeiras ações de extensão na área naquele universo acadêmico.

“Desenvolvido há mais de três décadas, aquele curso foi um dos primeiros do tipo na época (nada parecido existia, era inovador) e objetivou apresentar uma introdução sistematizada sobre o Cálculo Proposicional em Lógica Matemática, quando desenvolvi considerações sobre a linguagem formal e bivalente da Lógica Sentencial aplicável à Teoria da Demonstração e à Análise Inferencial para a avaliação de Raciocínios Lógicos Formalizáveis”; conforme já havia evidenciado anteriormente.

Com o necessário rigor científico, sendo um curso extremamente formal, identificado como “Curso Extraordinário” pelo CEFET-PR na época, desenvolvi no Curso os seguintes temas; quais sejam: Sistematização e Estruturação do Cálculo Proposicional em Lógica Matemática; Apresentação da Semântica e Sintaxe da Linguagem do Cálculo Proposicional; Formalização e Propriedades dos Operadores Lógicos e das Relações Lógicas; Estruturação da Álgebra Proposicional e Teoria da Demonstração; Método Dedutivo e Técnicas Dedutivas em Lógica Matemática; Teria da Argumentação e Análise Inferencial em Lógica Matemática; e, Aplicações do Cálculo Proposicional na Avaliação de Raciocínios Matemáticos.

Passados mais de trinta anos da realização daquele Curso ainda hoje se ouve falar dos seus efeitos como ficou gravado anteriormente no próprio corpo do artigo publicado no NOSSO JORNAL do Cefet-PR quando se lê: “Ele [o Curso sobre CÁLCULO PROPOSICIONAL EM LÓGICA MATEMÁTICA]” tornará os participantes aptos a algebrizar o raciocínio, e transformá-lo em um cálculo formal, como acontece com o cálculo matemático”.

Carlos Magno Corrêa Dias
16/10/2025

15 de out. de 2025

Inovando em Cálculo Proposicional.


Quando ainda os “Cursos de Extensão Universitária e Tecnológica” eram chamados de “Cursos Extraordinários” do então Cefet-PR (Centro Federal de Educação Tecnológica do Paraná), fui o proponente e coordenador do Curso sobre “Cálculo Proposicional em Lógica Matemática”.

DIAS, C. M. C. - 2025

Também ministrei aquele curso que foi iniciado em 02/10/1995, com duração de 20 horas, dirigido aos Estudantes de Graduação e de Pós-Graduação do Cefet-PR e aos Estudantes de Ciências Exatas de outras Instituições de Ensino Superior do país; sendo o mesmo chancelado pelo Núcleo de Cursos Extraordinários da Divisão de Integração Escola-Empresa da Diretoria de Relações Empresariais do Cefet-PR.

Desenvolvido há mais de três décadas, aquele curso foi um dos primeiros do tipo na época (nada parecido existia, era inovador) e objetivou apresentar uma introdução sistematizada sobre o Cálculo Proposicional em Lógica Matemática, quando desenvolvi considerações sobre a linguagem formal e bivalente da Lógica Sentencial aplicável à Teoria da Demonstração e à Análise Inferencial para a avaliação de “Raciocínios Lógicos Formalizáveis”.

Também foi um dos primeiros Cursos de Extensão Universitária e Tecnológica que ministrei na carreira para as Engenharias (principalmente); sendo direcionado para o “pensar analiticamente” no “mundo do engendrar” a partir do Raciocínio Lógico Dedutivo.

Diziam, entretanto, nos corredores “só os loucos podem entender aqueles símbolos”.

Verdade é que quem entrasse nas salas de aula onde desenvolvia o curso somente viria no quadro de giz, de fato, sequências e mais sequências de fórmulas extensas sem o uso de um único vocábulo (palavra) da Língua Mãe. Se escrevia apenas na linguagem formal própria do Cálculo Sentencial. E o mais interessante é que Professor e Estudantes (atentos) se entendiam naquelas “conversas formais” intermináveis utilizando apenas variáveis enunciativas e conectivos lógicos. Um privilégio. Tempos memoráveis!

Como diziam os participantes “aquele curso era apenas para os fortes”, pois enfrentar o conjunto formal de regras e símbolos (“pesados”) aparentemente indecifráveis não era trivial. Fez-se na verdade a diferença criando um caminho que formaria um batalhão de Profissionais detendo o poder da Lógica Matemática e que alcançaram sucesso contínuo em suas carreiras.

No curso em referência tratei, com o necessário rigor científico, os seguintes temas: Sistematização e Estruturação do Cálculo Proposicional em Lógica Matemática; Apresentação da Semântica e Sintaxe da Linguagem do Cálculo Proposicional; Formalização e Propriedades dos Operadores Lógicos e das Relações Lógicas; Estruturação da Álgebra Proposicional e Teoria da Demonstração; Método Dedutivo e Técnicas Dedutivas em Lógica Matemática; Teria da Argumentação e Análise Inferencial em Lógica Matemática; e, Aplicações do Cálculo Proposicional na Avaliação de Raciocínios Matemáticos.

Carlos Magno Corrêa Dias
15/10/2025

14 de out. de 2025

Dilemas cotidianos chamam reflexões.


Considerando a necessidade de se escolher entre opções mutuamente exclusivas (difíceis, inconvenientes, contraditórias, antagônicas) que venham gerar perplexidades e intensas batalhas valorativas, tem-se aquilo que se pode definir como “dilema”.

Um dos “dilemas” inquietantes é aquele que exige “o confronto da sociedade com a falta de humanização entre os homens”. Toda vez que se vê obrigada a escolher entre redefinir a imagem de homem para adequá-la ao papel desumano legado pela própria humanidade e abandonar o rótulo "humanidade" e criar uma versão idiossincrática de homem para reconhecer a falta de humanização que o individualiza, as dificuldades são enormes.

“Manter uma imagem humanista diante da desumanização e, ao mesmo tempo, relegar o humanismo a uma idealização” é, certamente, também, bem complicado.

Em 01/10/2010, concluía o prefácio à primeira edição do meu livro intitulado “Dilemas cotidianos” (ISBN: 978-85-88925-12-0), editado e publicado no ano de 2010, há 15 anos passados, no qual levo em conta reflexões sobre as contradições que tornam os homens antagônicos à humanidade ao expor, de forma não explícita ou categórica, supostos dilemas que impedem o avanço do homem em sua humanidade e/ou contradizem o básico da dignidade humana.

DIAS, C. M. C. - 2025

O livro pretende instigar e conduzir ao repensar para transcender a aparente humanidade consolidada frente ao aviltar o valor do próprio homem. Aventa-se que se uma chave existe para resolver o dilema central e alcançar em direção a humanização almejada, então se supõe que o reconhecimento e a manutenção efetiva da dignidade intrínseca de cada ser seria a forma mais adequada, mas não a definitiva.

Mas, sempre, se defenderá que a dignidade é o atributo da humanização. Seu desrespeito gera opressão, escravidão e degradação.

“Dilemas cotidianos” manifesta o desejo de que sua leitura oportunize e dissemine reflexões que possam priorizar a promoção humana como um natural processo evolutivo.

Como faço observar naquele prefácio “não se tem vislumbrado a possibilidade, mesmo que remota, de se renunciar às posições consolidadas. Parece, também, não ser de todo concebível manter uma imagem humanista de homem sem deixar de levar em conta a desumanização da humanidade e, nem tão pouco, se pode admitir a inexistência do humanismo relegando os dogmas associados à humanidade do homem a uma idealização compulsória assaz insatisfatória que centrada na sempre visão pluralista de sociedade impõe apenas mais contradições”.

“Dilemas cotidianos” põe em confronto questionamentos sobre os “dilemas” que exigem o reconhecimento das contradições que fazem dos homens contrários à humanidade ao obrigarem os mesmos homens a deixar a dignidade que deveria os distinguir de lado.

As contradições fazem dos homens seres antagônicos a despeito da razão que deveria acordar a dignidade na humanidade.

Carlos Magno Corrêa Dias
14/10/2025

12 de out. de 2025

Impregnações entre Lógica e Informática.


De 02/10/1995 a 06/10/1995, na PUC-PR (Pontifícia Universidade Católica do Paraná), foi realizado o “II Ciclo de Palestras sobre Lógica do Conhecimento: Impregnações entre Lógica e Informática” sob minha proposição e coordenação.

DIAS, C. M. C. - 2025

Durante o evento ministrei, também, no dia 06/10/1995, a conferência “Álgebra Booleana Aplicada à Lógica Digital”, na qual desenvolvi os conceitos de Matemática de Chaveamento ("Switching Algebra"); mostrando que a Álgebra Booleana foi formalizada, inicialmente, para tratar “analiticamente” a Lógica; sendo, posteriormente, utilizada tanto para analisar quanto projetar Circuitos de Chaveamento (ou Circuitos de Comutação).

DIAS, C. M. C. - 2025

Em um Circuito de Comutação, uma chave pode estar aberta ou fechada. A Álgebra Booleana usa apenas dois estados: 0 (Falso/Aberto) e 1 (Verdadeiro/Fechado). As operações básicas da Álgebra Booleana (“E”, “OU”, “NÃO”) correspondem diretamente às formas como as chaves podem ser conectadas em série ou em paralelo para formar as Portas Lógicas (“AND”, “OR”, “NOT”) da Eletrônica Digital.

Durante a minha palestra mostrei que a Álgebra Booleana é a ferramenta matemática que possibilita simplificar expressões e, consequentemente, reduzir o número de chaves (ou “Portas Lógicas”) necessárias para construir um circuito digital, tornando-o mais eficiente e barato; deixando bem claro que a Álgebra Booleana é a “base matemática” para a análise e o projeto de “Circuitos de Chaveamento” (em “Lógica Digital”).

Por sua vez, pensei o “II Ciclo de Palestras sobre Lógica do Conhecimento: Impregnações entre Lógica e Informática” como um momento particular na Academia (na Universidade) no qual se dava a conhecer, de forma sistematizada e objetivamente, formas específicas da Lógica associadas à Informática para otimização da resolução de problemas do mundo real.

Além de minha conferência foram apresentadas as seguintes outras palestras; quais sejam: Lógica e Inteligência Artificial (03/10/1995); Lógica Fuzzy e suas aplicações (em 04/10/1995); Lógica Paraconsistente e o PROLOG (em 05/10/1995); bem como Lógica de Programação e suas implicações (em 06/10/1995).

O evento em referência foi de vanguarda e inovador lá em 1995, constituindo, por si só, numa iniciativa notavelmente abrangente e visionária, de alto nível e multidisciplinar, que ao explorar interconexões entre Lógica e Informática, cobrindo os principais pilares conceituais e aplicações práticas da Lógica na Computação da época, demostrava que a Lógica era o fundamento para diversas áreas da Informática.

O “II Ciclo de Palestras sobre Lógica do Conhecimento: Impregnações entre Lógica e Informática” até hoje, mais de três décadas depois, ainda é referência na área, pois buscou explorar como a Lógica está intrinsecamente "impregnada" em diferentes níveis da Informática (hardware, software, inteligência artificial e raciocínio).

Carlos Magno Corrêa Dias
13/10/2025

Percorrendo as trilhas da Silogística.


Em primeiro de outubro de 2000, redigia o prefácio à primeira edição do meu livro intitulado “Silogística: introdução à lógica categórica” (ISBN: 85-900661-5-0), o qual, também, editei no ano de 2000; há, portanto, mais de um quarto de século, 25 anos atrás.

DIAS, C. M. C. - 2025

A edição de 2000 daquela obra teve por propósito “apresentar, de forma a mais clara possível, uma exposição concisa sobre a SILOGÍSTICA, bem como, sobre alguns dos elementos a ela associados” uma vez, que na época, julguei necessário dar a conhecer a Lógica dos Silogismos a todo aquele que pretendia introduzir-se no estudo da Lógica Formal.

Todavia, “das múltiplas implicações que envolvem os raciocínios silogísticos”, o trabalho em referência não poderia apresentar “extensas considerações relacionadas com a correspondente teoria, senão uma visão panorâmica da mesma acrescida, porém, de algumas ponderações particulares” que ajudaram os iniciantes no estudo da Lógica Matemática.

Observo, porém, que a obra apresentou os temas de forma que tanto a leitura resultasse menos árdua quanto que a compreensão fosse facilitada, servindo o livro com proveito tanto para Estudantes quanto para Professores, não sendo exigido um nível de conhecimento prévio em Lógica Matemática.

Empreguei na exposição linguagem a mais clara possível para não dificultar a compreensão das ideias com desnecessários tecnicismos. Contudo, inevitavelmente, algum formalismo (categórico) foi considerado quando a matéria abordada assim o requeria (inevitavelmente).

Dividi o livro em dez capítulos da seguinte forma: CAPÍTULO I: Prolegômenos às Origens da Lógica Matemática; CAPÍTULO II: Matemática e Lógica em Platão; CAPÍTULO III: Matemática e Lógica em Aristóteles; CAPÍTULO IV: Preliminares sobre Argumentos; CAPÍTULO V: Proposições ou Enunciados Categóricos; CAPÍTULO VI: Diagramas de Venn e Enunciados Categóricos; CAPÍTULO VII: Cálculo dos Predicados e Proposições Categóricas; CAPÍTULO VIII: Regras de Inferência; CAPÍTULO IX: Silogismos; CAPÍTULO X: Silogismos como Teoria Axiomática.

Pode-se dizer que os capítulos precedentes ao CAPÍTULO X são um “preparatório teórico” para um melhor entendimento dos Sistemas Axiomáticos Silogísticos utilizados para a avaliação da legitimidade de silogismos.

Como salientei no prefácio da obra, “seria absurdo, num livro de introdução à Silogística de Aristóteles, esperar que tudo o quanto se relacione com o tema tenha sido tratado especificamente”. O livro continua sendo um “compêndio introdutório” sobre a Silogística de Aristóteles (384-322 a.C.) voltado para a instituição do Cálculo dos Predicados (ou Cálculo das Funções Proposicionais) em Lógica Matemática de Primeira Ordem. Entretanto, o correspondente conteúdo, que exigiu edições posteriores (também, já esgotadas), vem sendo, nos últimos 25 anos, referência consistente para diversificados estudos por outros muitos autores.

Carlos Magno Corrêa Dias
12/10/2025

11 de out. de 2025

Lei e Justiça para assassinos de guerra.


"A guerra transforma pessoas decentes em assassinos. Todas as guerras e todas as pessoas decentes."

O pensamento precedente pertence a Benjamin Berell Ferencz (1920-2023) aquele que atuou como Promotor-Chefe do Exército dos Estados Unidos no Julgamento dos “Einsatzgruppen” (Grupos de Extermínio) em Nuremberg (ocorrido entre 1947 e 1948, considerado o maior julgamento de assassinato da história) e que foi defensor incondicional da Justiça e do Estado de Direito Internacional.

Em sua declaração de abertura no Julgamento dos “Einsatzgruppen” em Nuremberg, Benjamin Berell Ferencz disse: "A vingança não é o nosso objetivo. Tampouco buscamos apenas uma retribuição justa. Pedimos a este tribunal que afirme por meio de ação penal internacional o direito do homem de viver em paz e com dignidade, independentemente de sua raça ou credo".

Benjamin Berell Ferencz nasceu na Transilvânia emigrando para os Estados Unidos com sua família ainda criança; formou-se em Direito pela Universidade de Harvard e faleceu em 7 de abril de 2023, aos 103 anos. Ao longo de sua carreira assumiu o compromisso de que “a lei, e não a guerra, deve reger as relações entre as nações”.

Engajado na defesa da justiça desde sempre, Benjamin Berell Ferencz serviu no exército dos EUA, desembarcando na Praia de Omaha no Dia D. Juntamente com sua unidade avançou pela Europa e, no final da guerra, foi designado para coletar evidências de crimes de guerra nazistas e de atrocidades nos campos de concentração recentemente libertados; sendo a crueldade e o assassinato em massa presenciado o que moldaria permanentemente sua visão de mundo e seu propósito de vida.

Como Promotor-Chefe nos Julgamentos de Nuremberg no caso “Einsatzgruppen” foi o responsável pela condenação dos réus que comandaram os "esquadrões da morte" itinerantes da SS alemã. Depois de Nuremberg a dedicação de Benjamin Berell Ferencz à justiça seguiu dia após dia em sua vida se engajando, também, na luta por reparação e restituição para as vítimas e sobreviventes do Holocausto.

A defesa da ideia "Law, Not War" (Lei, Não Guerra) é, sem dúvida, o maior legado de Benjamin Berell Ferencz para a humanidade o qual é “atemporal e multifacetado”. “A guerra é um crime supremo e as atrocidades cometidas devem ser entendidas e julgadas com todo rigor da Lei”. 

DIAS, C. M. C. - 2025

A partir da década de 1970, Benjamin Berell Ferencz trabalhou incansavelmente promovendo a criação do Tribunal Penal Internacional (TPI); o qual somente foi concretizado em 2002. Com o estabelecimento do TPI, em Haia (nos Países Baixos, na província da Holanda do Sul), que se destina a processar indivíduos por crimes de guerra, crimes contra a humanidade, genocídio, bem como o crime de agressão; tem-se a uma importante Instituição de Justiça Internacional, permanente e independente, passou a ser possível investigar e julgar “pessoas” por seus crimes internacionais e não Estados.

Carlos Magno Corrêa Dias
11/10/2025

9 de out. de 2025

Sempre simbiose entre Academia e Indústria.


Além do Curso de Extensão Universitária e Tecnológica em ANÁLISE INFERENCIAL DEDUTIVA EM LÓGICA MATEMÁTICA o qual ministrei na Sede Central do Câmpus Curitiba da UTFPR (Universidade Tecnológica Federal do Paraná) e que integrou a edição 2015 da Programação Nacional da SNCT (Semana Nacional de Ciência e Tecnologia), ministrei, também, na mesma época, a conferência “Necessária Simbiose entre Tecnologia da Indústria e Ciência da Academia”.

DIAS, C. M. C. - 2025

A palestra em referência fez parte, também, da comemoração dos dez anos da transformação do então Cefet-PR (Centro Federal de Educação Tecnológica do Paraná) em UTFPR a qual ocorreu em 7 de outubro de 2015.

DIAS, C. M. C. - 2015

Durante a apresentação chamei a atenção para a urgente necessidade de se estabelecer a união de esforços entre Indústria e Universidade por meio da simbiose entre a Tecnologia e a Ciência. Como disse na época e sigo afirmando: “Indústria e Academia devem se associar para a produção de conhecimento útil para melhorar a vida das pessoas e para o pleno desenvolvimento e progresso da Nação”.

A edição de 2015 da SNCT, a 12ª edição, teve como tema “LUZ, CIÊNCIA E VIDA” o qual foi escolhido para celebrar o “Ano Internacional da Luz e das Tecnologias Baseadas na Luz (IYL 2015).

DIAS, C. M. C. - 2015

O correspondente tema foi escolhido pela Organização das Nações Unidas (ONU), sob a liderança da Unesco (Organização das Nações Unidas para a Educação, a Ciência e a Cultura), cujo objetivo principal foi o de “aumentar a consciência global sobre como as tecnologias baseadas na luz (fotônica) promovem o desenvolvimento sustentável e fornecem soluções para desafios globais em áreas cruciais”.

As edições da SNCT são coordenadas pelo Ministério da Ciência, Tecnologia e Inovação (MCTI) e visam a popularização da Ciência e da Tecnologia junto à Sociedade especialmente entre jovens e estudantes.

Entendendo que a colaboração entre a Ciência da Academia e a Tecnologia da Indústria é o motor essencial para a inovação, o desenvolvimento econômico e a solução de desafios sociais complexos, desenvolvi a corresponde palestra ressaltando que “somente acontecerá uma mudança significativa no ritmo de desenvolvimento tecnológico no mundo para gerar mais competitividade econômica e ampliar as possibilidades de solução dos problemas quando houver, de fato, uma sinergia entre os vários níveis de geração do conhecimento seja ele científico ou tecnológico”.

A relação entre os conhecimentos científicos e tecnológicos permite para a Indústria conhecer os avanços da Ciência que possibilitam manter a competitividade global, gerar produtos cada vez mais inovadores e aumentar a produtividade mais rapidamente do que se faz apenas com recursos internos. Já para a Universidade tem-se a vantagem do contexto prático no qual se pode focar em problemas reais mais relevantes, sem contar o importante aporte de recursos financeiros advindos do Setor Produtivo como um todo.

Carlos Magno Corrêa Dias
10/10/2025

A primeira Universidade Tecnológica Federal do Brasil.


O CEFET-PR (Centro Federal de Educação Tecnológica do Paraná) se transformou na UTFPR (Universidade Tecnológica Federal do Paraná) no dia 7 de outubro de 2005, há, portanto, mais de 20 anos (duas décadas). A transformação foi oficializada pela Lei Federal nº 11.184, de 7 de outubro de 2005.

DIAS, C. M. C. - 2025

A UTFPR foi a primeira Instituição de Ensino do Brasil a receber o título de UNIVERSIDADE TECNOLÓGICA FEDERAL; mas, a história da TECNOLÓGICA é uma trajetória centenária e marcada por diversas mudanças a partir de 1909 quando foi criada por Decreto Presidencial. Na época recebeu a denominação de ESCOLA DE APRENDIZES ARTÍFICES DO PARANÁ e teve por objetivo oferecer Ensino Profissional gratuito e de qualidade para os Jovens de baixa renda da época.

Atualmente, a UTFPR tendo consolidado a oferta de Cursos de Graduação, Pós-Graduação e a expansão para o interior do Estado do Paraná (conta com 13 Câmpus), oferece Ensino Público gratuito e de qualidade em diversas áreas do saber.

A TECNOLÓGICA é pioneira em várias áreas como, por exemplo, foi uma das primeiras a ofertar no Paraná os Cursos de Mestrado e Doutorado em Engenharia Elétrica. Por diversas vezes obteve a melhor avaliação entre as Instituições Federais de Ensino Superior do Paraná, sendo classificada entre as melhores Instituições tanto do Brasil como do mundo. Com sua qualidade e eficiência a TECNOLÓGICA é exemplo de como o Ensino Técnico evoluiu para se tornar referência em Educação Tecnológica no Brasil.

Desde sempre TECNOLÓGICA. A TECNOLÓGICA sempre com “Tecnologia e Humanismo”.

DIAS, C. M. C. - 2025

Ouve-se dizer que quando a história de vida de alguém se confunde com a história da Instituição onde este alguém trabalha, um legado foi construído.

Em 2017 completei o significativo um quarto de século atuando na TECNOLÓGICA. Até aquele ano havia completado a indissociabilidade entre Ensino-Pesquisa-Extensão associando, também, a Gestão; sendo: Professor do Ensino Superior, Pesquisador, Extensionista, Paraninfo, Presidente de Comissões, Conselheiro Eleito para Órgãos Deliberativos, Delegado da Instituição, Gestor de Projetos de Pesquisa e Extensão, Proponente e Ministrante de Cursos e Atividades de Extensão, Membro de Colegiados e de Conselhos de Cursos, Autor e Coautor de Projeto de Abertura e Reformulação de Cursos de Graduação e de Pós-Graduação, Professor Homenageado em Formaturas, Membro de Bancas Examinadoras, Membro de Comissões do Vestibular, Representante Institucional em Conselhos Externos, Membro de Comissões e Grupos de Trabalho, Chefe de Disciplinas, Coordenador de Projetos de Pesquisa, Proponente e/ou Idealizador de Cursos de Graduação e de Pós-Graduação, dentre outras muitas atividades de Ensino-Pesquisa-Extensão-Gestão.

Neste 2025 são completados 33 anos desde minha aprovação em primeiro lugar no Concurso para Professor de Matemática do Departamento Acadêmico de Matemática do então Cefet-PR.

Carlos Magno Corrêa Dias
09/10/2025

8 de out. de 2025

Arte e patrimônio cultural transcendem.


A Catedral Diocesana de Nossa Senhora da Conceição de Jacarezinho do Norte Pioneiro do Estado do Paraná foi inaugurada em 08 de outubro de 1949, marcando o início de seu uso litúrgico, mesmo que as obras continuassem e a pedra fundamental tenha sido assentada em 17 de julho de 1942.

DIAS, Carlos Magno Corrêa - 2025

Atualmente a Catedral Diocesana de Nossa Senhora da Conceição de Jacarezinho (PR) é reconhecida como Patrimônio Histórico e Cultural do Estado do Paraná embora em 1949 ainda muito trabalho precisava ser feito. A conclusão total das obras tanto arquitetônicas quanto artísticas, incluindo os fantásticos murais e estátuas da Catedral se estendeu pelos anos seguintes até cerca do final da década de 1950.

A extraordinária Catedral de Jacarezinho é um tesouro que encanta pela grandiosidade e beleza estrutural em cada detalhe. Possui 67 metros de comprimento e 22 metros de largura, sendo construída no formato de Basílica com pilares e na forma de cruz. Todavia, a Catedral tem outro patrimônio de valor artístico incalculável representado tanto pelos painéis gigantescos pintados à mão que cobrem cerca de 600 metros quadrados, com murais de até 15 metros de altura, com figuras de até 3 metros, quanto pelas estátuas fabulosas esculpidas à mão.

“Os murais da Catedral Diocesana de Jacarezinho foram pintados pelo fluminense Eugênio de Proença Sigaud (natural de Porciúncula-RJ) e pelo mineiro José Waldetaro Moura e Dias (natural de Botelhos-MG). As esculturas foram produzidas pelo escultor espanhol Silvestre Blasco (nascido na cidade de Torroja Del Priorat, na Catalunha, na Espanha) com auxílio de seu filho mais velho Valentín Blasco. Valentín Blasco além de policromar as estátuas do pai, pintou, também, os 14 quadros que compõem a Via-Sacra representando as estações da cruz que descrevem o caminho até o calvário”. Coube ao citadino de Jacarezinho conhecido como “Pablo” (de quem pouco se sabe) o trabalho árduo de talhar a madeira bruta como preparativo para a criação das magníficas estátuas que ornam o interior da Catedral.

Ao se mencionar a Catedral de Jacarezinho é sempre ocasião de rememorar, também, as várias contribuições do pintor botelhense José Waldetaro Moura e Dias (morador de Jacarezinho na época). Suas contribuições foram múltiplas: participou da pintura de boa parte daqueles murais e apresentou diversas sugestões para a forma final das figuras; sendo, adicionalmente, modelo "vivo" para várias das imagens que ornam a Catedral, o que é atestado pela sua silhueta inconfundível visível em diversas partes da obra.

No artigo intitulado “Monumentais obras se perpetuam na Capital Estudantil do Norte Pioneiro”, o qual foi publicado nas páginas da FNE e do Seesp; estando disponível, respectivamente, nos endereços: https://tinyurl.com/5pz65tz4 e https://tinyurl.com/3mbtenyv, são apresentados algumas considerações sobre a história daquela excelente Catedral.

Carlos Magno Corrêa Dias
08/10/2025

7 de out. de 2025

TECNOLÓGICA integrando a SNCT.


A Semana Nacional de Ciência e Tecnologia (SNCT) de 2015, iniciativa coordenada pelo Ministério da Ciência, Tecnologia e Inovação (MCTI), foi realizada no período de 19 a 25 de outubro de 2015, tendo como tema “LUZ, CIÊNCIA E VIDA”.

MCTI - SNCT 2015 - 2015

O ano de 2015 foi proclamado, pela Assembleia Geral das Nações Unidas, como o “Ano Internacional da Luz”. A edição de 2015 da SNCT esteve fortemente em sintonia com a celebração da luz como um elemento fundamental para a Ciência e para o desenvolvimento da Tecnologia.

A SNCT 2015, como em todas as edições, objetivou popularizar a Ciência e a Tecnologia (C&T), aproximando-as da Sociedade. “A ideia foi mostrar a importância da C&T para o desenvolvimento e o progresso do país e incentivar a curiosidade e o pensamento científico e ações tecnológicas especialmente entre jovens e estudantes”.

“O tema "LUZ, CIÊNCIA E VIDA" incentivou a reflexão sobre a importância da luz em diversos aspectos, desde a vida na Terra (como a fotossíntese e o funcionamento do corpo humano) até o desenvolvimento tecnológico (como a fibra óptica, que revolucionou a internet, e o desenvolvimento de LEDs eficientes)”.

A SNCT contou com eventos gratuitos em todo o Brasil e foi considerada uma das edições mais ricas e criativas, destacando como a luz permeia todos os aspectos da vida humana e como seu estudo impulsiona avanços científicos e tecnológicos.

Tive a grata satisfação de ter o Curso de Extensão Universitária e Tecnológica em ANÁLISE INFERENCIAL DEDUTIVA EM LÓGICA MATEMÁTICA, o qual propus, coordenei e ministrei na Sede Central do Câmpus Curitiba da TECNOLÓGICA (Universidade Tecnológica Federal do Paraná - UTFPR), integrando oficialmente a Programação Nacional da SNCT 2015.

DIAS, C. M. C. - 2015

Desde 2004, aquela foi a primeira vez na história das edições da SNCT que um Projeto de Extensão Universitária e Tecnológica da UTFPR foi aprovado para integrar oficialmente a SNCT.

DIAS, C. M. C. - 2025

O Curso de Extensão Universitária e Tecnológica em ANÁLISE INFERENCIAL DEDUTIVA EM LÓGICA MATEMÁTICA objetivou apresentar o Cálculo Lógico Proposicional (Sentencial) desenvolvido em Lógica Matemática Dedutiva de Primeira Ordem para o estabelecimento de Métodos e Técnicas Formais de Raciocínios Dedutivos de forma a permitir evidenciar e analisar, mediante a Álgebra da Lógica, a Validade e a Consistência de Raciocínios estruturados como Argumentos Dedutivos ou Inferências.

O correspondente Curso foi desenvolvido no período de 14/09/2015 a 24/10/2015, em um total de 30 (trinta) horas-aula, conforme Projeto número 134/2015/DIREC/CT/UTFPR, seguindo as diretrizes da edição de 2015 da SNCT.

Cabe salientar que os diversos eventos que compuseram a edição 2015 da SNCT “procuraram conectar os conceitos de LUZ, CIÊNCIA e VIDA de forma abrangente e interligada e foram desenvolvidos com linguagem acessível para o público em geral para mostrar a importância da Ciência e da Tecnologia de forma interativa e educativa”.

Carlos Magno Corrêa Dias
07/10/2025

6 de out. de 2025

A Inclusão como Estratégia.


O cenário empresarial atual chama por ambientes de trabalho cada vez mais diversos e inclusivos e inovadores. Na nova realidade a “INCLUSÃO” deixou de ser apenas uma questão de se fazer cumprir a Legislação, mas se tornou um importante pilar estratégico para o desenvolvimento, a performance e a Responsabilidade Social Corporativa (RSC).

Pode-se afirmar que a inclusão, para além de um requisito legal, se tornou um IMPERATIVO DE NEGÓCIO e uma ESTRATÉGIA DE GESTÃO que possibilita gerar valor, inovação e fortalecer a posição das empresas no mercado e na própria Sociedade sendo um diferencial a ser perseguido para se manter competitividade.

Tive a satisfação de ser convidado pelo Sistema Fiep (Sistema Federação das Indústrias do Estado do Paraná), por meio da Coordenação de Parcerias Institucionais do Sistema Fiep, para participar, em 30/09/2025, da oficina “Inclusão da Pessoa com Deficiência na Indústria”, promovida pelo Sesi-PR (Serviço Social da Indústria Sesi Paraná) e pelo Conselho de Responsabilidade Social do Sistema Fiep em parceria com o Cifal Curitiba (Centro Internacional de Formação de Autoridades e Líderes de Curitiba) e o Unitar (Instituto das Nações Unidas para Treinamento e Pesquisa).

Sistema Fiep - Sesi-Pr- Cifal Curitiba _unitar
Sistema Fiep - Sesi-PR - 2025

A oficina (prática e informativa) foi um momento especial “para refletir e criar oportunidades e estratégias no contexto atual para a inclusão da Pessoa com Deficiência no mundo do trabalho”.

Já há algum tempo é sabido que equipes que incluem pessoas com diferentes habilidades, origens, idades, gêneros e deficiências, são favorecidas com uma variedade maior de ideias e pontos de vista. E é a pluralidade de pensamento o motor para a inovação e para a resolução de problemas que ampliam a competitividade. Empresas com foco na inclusão estão mais aptas a “entender e atender” o mercado consumidor cada vez mais diversificado possibilitando a criação tanto de novos produtos como de serviços mais relevantes.

De outro lado, “quando os colaboradores se sentem valorizados e respeitados em sua individualidade, o engajamento e a satisfação no trabalho aumentam. Um clima organizacional positivo, resultante da cultura de inclusão, mostra uma maior produtividade e a uma menor rotatividade”.

O mercado avançou do simples conceito de “integração” do trabalhador em um ambiente já existente para a concepção de “inclusão” que exige uma mudança cultural e estrutural das empresas de forma que “todos tenham oportunidades de desenvolvimento, crescimento e participação efetiva”. Percebeu-se a necessidade de uma “Cultura de Inclusão” como valor incorporado à cultura da empresa, desde os processos seletivos até os cargos de liderança.

Mais uma vez o Sistema Fiep promove espaço de vital importância para o pleno desenvolvimento da Indústria do Paraná ao tratar, com excelência, a inclusão da Pessoa com Deficiência (PcD) no mercado de trabalho industrial.

Carlos Magno Corrêa Dias
06/10/2025

5 de out. de 2025

Celebrando a força colaborativa dos Docentes.


O DIA MUNDIAL DOS PROFESSORES, celebrado a cada 5 de outubro, comemora o aniversário da aprovação da Recomendação da OIT (Organização Internacional do Trabalho) / Unesco (Organização das Nações Unidas para a Educação, a Ciência e a Cultura) de 1966 Relativa ao Estatuto dos Professores; documento que é considerado mundialmente como o pilar que estabelece a base para o reconhecimento global da Profissão DOCENTE não apenas focando na valorização, mas, também, estabelecendo parâmetros importantes para a Profissão.

Em 2025, o tema do DIA MUNDIAL DOS PROFESSORES da Unesco (denominado, também, DIA INTERNACIONAL DO DOCENTE, Ou DIA MUNDIAL DO DOCENTE) é: "Reformulando o ensino como uma profissão colaborativa" (Em inglês: "Rethinking teaching as a collaborative profession").

Semelhante abordagem destaca a importância vital de transformar o Ensino em uma prática baseada na cooperação entre Educadores, promovendo ambientes de Aprendizagem cada vez mais inclusivos, equitativos e eficazes.

Como sigo dizendo “os Professores são Profissionais que Ensinam e Aprendem ministrando aulas para transformar o mundo”.

DIAS, C. M. C. - 2019

“No mundo do saber e do conhecimento, pobre é aquele que não tem o que ENSINAR e tolo é aquele que não tem o que APRENDER. Mas, a conjunção entre ENSINAR e APRENDER é qualidade apenas do VERDADEIRO PROFESSOR”.

DIAS, C. M. C. - 2019

“Aquele que não trabalha objetivando ser superado pelos seus Alunos não pode ser chamado de PROFESSOR”.

DIAS, C. M. C. - 2020

Parabéns aos Professores no DIA MUNDIAL DO DOCENTE.

Carlos Magno Corrêa Dias
05/10/2025

4 de out. de 2025

Celebrando a visão positiva do homem.


O homem nascido como Giovanni di Pietro di Bernardone (1181-1226) faleceu em 3 de outubro de 1226, mas em 4 de outubro é celebrado como São Francisco de Assis; uma “luz que brilhou sobre o mundo” o qual “numa visão positiva do homem e da natureza, ensinou PAZ e BEM para se manter a dignidade entre os homens para se viver uma humanidade sempre melhor’.

DIAS, C. M. C. - 2024

Na tradição litúrgica, o dia de celebração da morte se faz no “dies natalis” (ou “nascimento para o Céu”). São Francisco de Assis faleceu na tarde do dia 3 de outubro de 1226, há quase oitocentos anos. Mas, o “dia litúrgico” de festa começa nas vésperas (a noite) do dia anterior e termina nas vésperas do próprio dia da festa. Como a morte de São Francisco ocorreu no final da tarde do dia 3 de outubro e o período da tarde/noite já é considerado o início do dia 4 de outubro no calendário litúrgico, a celebração no dia 4 de outubro honra o momento em que a vida terrena de São Francisco se encerrou e se estabeleceu o seu "dies natalis".

DIAS, C. M. C. - 2025

O DIA DE SÃO FRANCISCO DE ASSIS, o qual é o Patrono dos Animais e do Meio Ambiente (Padroeiro Protetor dos Animais e da Natureza), é celebrado em 4 de outubro. Neste dia comemora-se, também, o Dia Mundial dos Animais, o Dia Nacional da Natureza, bem como o Dia do Cachorro (Dia dos Cães).

DIAS, C. M. C. - 2025

É oportuno salientar que, 4 de outubro, dia em memória de São Francisco de Assis, voltará a ser feriado nacional na Itália a partir de 2026, quando se completará o oitavo centenário de morte daquele que pregou PAZ e BEM incondicionalmente para todos e que sonhou com um mundo fraterno onde se prevaleça o amor aos seres vivos. A Lei foi aprovada pelo Senado daquele país no final de setembro de 2025 e retorna ao calendário oficial com todos os efeitos legais de um feriado nacional, incluindo descanso pleno nos locais de trabalho e fechamento de escolas e escritórios públicos.

DIAS, C. M. C. - 2025

O legado de Francisco de Assis vai além das fronteiras dogmáticas uma vez que, mesmo depois de oito século, segue encorajando o diálogo entre os homens tomados como irmãos em torno da PAZ e do BEM. Francisco de Assis é referenciado como defensor dos valores de paz, fraternidade e proteção ambiental, independentemente de posições políticas ou religiosas.

Francisco de Assis dedicou-se a prestar o BEM para as pessoas; renunciando a todos os seus bens materiais e vivendo para ajudar enfermos e pobres e amando a natureza e a criação. “Com seu lema “PAZ e BEM” São Francisco de Assis não apenas possuía uma visão positiva do homem e da natureza como, também, dedicou sua vida terrena para manter a dignidade entre os homens objetivando uma humanidade sempre melhor”.

Como pensava Francisco de Assis, aquele que reconhecia a bondade e a maravilha da criação, que se dedicou aos mais pobres dos pobres e que amou todas as criaturas chamando-as de irmãos, “... homem vale pelo que é e não mais”.

PAZ e BEM!

Carlos Magno Corrêa Dias
04/10/2025

3 de out. de 2025

Conexões que transformam a Indústria.


Fui convidado a participar do encontro “Conexões que Transformam: Embrapii & Ambientes de Inovação”, realizado em 24 de setembro de 2025, pelo Sistema Fiep (Sistema Federação das Indústrias do Estado do Paraná), por meio do Parque Tecnológico do Sistema Fiep.

Habitat Mobilidade - Sistema Fiep - 2025

O evento foi “uma oportunidade única para conhecer de perto as competências, estruturas, espaços físicos e laboratórios das Unidades Embrapii, além de estabelecer conexões estratégicas e descobrir novas possibilidades de negócio e colaboração para inovar”.

A Embrapii (Empresa Brasileira de Pesquisa e Inovação Industrial) foi uma das principais envolvidas no evento em referência que teve apoio do Lactec e Senai ISI, com participação do SEBRAE, tendo por foco principal a aproximação de empresas e startups com as Unidades Embrapii para estimular a inovação.

A Embrapii é uma Organização Social qualificada pelo Governo Federal do Brasil e cuja missão é apoiar a pesquisa tecnológica e a inovação no setor industrial brasileiro.

A Embrapii atua por meio da cooperação com Instituições de Ciência e Tecnologia (ICTs) públicas ou privadas, que são credenciadas como Unidades Embrapii. Essas Unidades recebem recursos não reembolsáveis da Embrapii para executar projetos de pesquisa, desenvolvimento e inovação (PD&I) com empresas do setor industrial, tendo foco em projetos de inovação tecnológica que visam desenvolver novos produtos, processos e serviços ou aprimorar os existentes. A Embrapii é um agente facilitador e cofinanciador “responsável por conectar as necessidades de inovação da Indústria com a capacidade técnica das instituições de pesquisa”.

O ecossistema de inovação brasileiro encontrou um ponto de convergência e aceleração no evento "Conexões que Transformam: Embrapii & Ambientes de Inovação". O evento mais que um encontro foi uma ação estratégica desenhada para aproximar três pilares fundamentais: empresas, ambientes de inovação e as Unidades Embrapii (Empresa Brasileira de Pesquisa e Inovação Industrial).

“O sucesso da inovação, especialmente no Setor Industrial, reside na capacidade de transpor o conhecimento teórico para a aplicação prática e as Unidades Embrapii representam um ativo crucial no correspondente processo”, sendo o evento em referência como uma vitrine e um “matchmaking” de alto nível. “A colaboração entre o “know-how” de mercado das empresas, a agilidade dos ambientes de inovação e a capacidade técnica e de Pesquisa e Desenvolvimento das Unidades Embrapii cria seguidamente um mecanismo sinérgico potente gerando, também, um ciclo acentuado de inovação”.

O encontro em questão foi um “catalisador de parcerias estratégicas”, solidificando o entendimento que a Inovação Industrial é um processo coletivo capaz de impulsionar e capitalizar tanto novas Tecnologias quanto possibilidades de negócio que emergem da correspondente rede de colaboração.

Carlos Magno Corrêa Dias
03/10/2025

1 de out. de 2025

Prolixa consistência procedimental reversa.


Inteligência e sabedoria não são as faces de uma mesma moeda. Sabedoria se adquire com a experiência. Inteligência não depende da experiência.

DIAS, C. M. C. - 2025

Carlos Magno Corrêa Dias

01/10/2025

30 de set. de 2025

Mineração na Amazônia Azul.


A Amazônia Azul (o Mar do Brasil) é o vasto território marítimo brasileiro que abrange cerca de 5,7 milhões de km² e que corresponde a um potencial estratégico significativo em seus fundos marinhos. A exploração dos correspondentes recursos minerais leva o Brasil a um complexo debate que obriga o equilíbrio entre as oportunidades de desenvolvimento econômico e os desafios da sustentabilidade ambiental e geopolítica.

“O fundo do mar brasileiro abriga minerais cruciais para a transição energética e o desenvolvimento sustentável do país, alinhado com os Objetivos de Desenvolvimento Sustentável (ODS). A capacidade de explorar e utilizar tais recursos pode ampliar a inserção do Brasil na ‘Economia Azul’ e fortalecer sua base industrial”.

O Brasil tem investido consistentemente em pesquisa e exploração ao longo das últimas décadas. Iniciativas como os levantamentos sistemáticos da Marinha e Universidades, e programas estratégicos como PGGM, REMAC, LEPLAC, REMPLAC e PROAREA, visam mapear e compreender de forma sistemática esses recursos. Tais projetos demonstram a importância de uma abordagem integrada na qual a Tríplice Hélice do Conhecimento-Inovação (formada pela Indústria, Academia e Governo) gira de forma sustentável gerindo bem os recursos oceânicos.

Mas, a mineração em águas profundas impõe grandes desafios, principalmente no âmbito ambiental. Os impactos potenciais dessa atividade são vastos e preocupantes. A exploração deve, portanto, ser precedida e acompanhada por rigorosas medidas de mitigação e monitoramento, baseadas em conhecimentos gerados tanto pelas Ciências quanto pelas Tecnologias.

Em paralelo, a exploração mineral marinha toca em complexas questões geopolíticas e de soberania. A disputa pelos recursos se dá tanto dentro da Zona Econômica Exclusiva (ZEE) brasileira quanto em áreas internacionais (AREA), cuja regulação é de responsabilidade da Autoridade Internacional dos Fundos Marinhos (ISA). A atuação do Brasil nesse cenário exige a afirmação de sua soberania em sua ZEE e a participação ativa nas discussões internacionais para moldar um regime de exploração que seja justo, transparente e, acima de tudo, sustentável.

A riqueza mineral da Amazônia Azul representa uma faceta estratégica do Brasil, mas sua exploração demanda cautela. O caminho a seguir exige que o país continue a investir em conhecimento científico para entender os ecossistemas profundos, desenvolver tecnologias de mineração de baixo impacto e criar marcos regulatórios robustos que garantam a proteção ambiental e o benefício social e econômico.

Montagem a partir de Divulgação do Cembra - 2025
Cembra - 16 anos de história

A convite do Cembra (Centro de Excelência para o Mar Brasileiro) tive a oportunidade de assistir a palestra “Mineração na Amazônia Azul: Desafios e Oportunidades”, realizada em 24 de setembro de 2025, promovida pelo próprio Cembra, na qual se abordou as questões precedentemente consideradas.

Carlos Magno Corrêa Dias
30/09/2025

29 de set. de 2025

Álgebras Computáveis e Recursivamente Computáveis.


Quando se trata de "Álgebras Computáveis e Recursivamente Computáveis" se está fazendo referência a áreas mais avançadas da Lógica Matemática e da Teoria da Computação e/ou (mais especificamente) à Teoria da Recursão (ou Teoria da Computabilidade) aplicada a qual envolve “Estruturas Algébricas” cujos elementos e operações podem ser manipulados e calculados de forma algorítmica (formal).

Uma “Álgebra Computável” (ou “Estrutura Computável”) é uma “Estrutura Algébrica” que atende, necessariamente, um “Domínio Computável” e é constituída de “Operações Computáveis”.

O “Domínio Computável” corresponde ao conjunto de elementos da estrutura que pode ser representado por um conjunto de números naturais ou por algum conjunto que seja recursivamente enumerável (que pode ser listado por um algoritmo); enquanto as “Operações Computáveis” são todas as operações, relações e funções básicas da estrutura que são computáveis (ou seja, existe um algoritmo que pode calculá-las ou decidi-las em um número finito de passos).

Assim sendo, de forma mais elementar e/ou simples, diz-se que uma “Álgebra Computável” é aquela na qual é sempre possível efetivamente "programar" em um computador.

Já o termo “Recursivamente Computável" faz alusão ao que é “Computável” no contexto de “Teoria da Computação”, baseando-se em “Funções Recursivas Parciais”. Na prática quando se diz que uma “Estrutura” é “Computável” se está pensando no “Decidível”. Então, o termo "Recursivamente Computável" usado para “Estruturas” é sinônimo de “Computável” ou “Decidível”.

Para dar a conhecer sobre os conceitos precedentemente considerados ministrei, em 27 de setembro de 2010, na Sede Central do Câmpus Curitiba da TECNOLÓGICA (UTFPR - Universidade Tecnológica Federal do Paraná, em um total de duas horas, a Palestra Técnica intitulada “Álgebras Computáveis e Recursivamente Computáveis”, a qual foi inolvidável e inovadora.

DIAS, Carlos Magno Corrêa - 2025

Após evidenciar o que são “Álgebras Computáveis e Recursivamente Computáveis”, integrantes da Teoria da Computabilidade (a qual estuda o que pode ser efetivamente calculado por algoritmos), mostrei que as estruturas correspondentes podiam ser aplicadas em áreas como Ciência da Computação; em Linguagens Formais e Autômatos; na “Verificação de Softwares”; na Teoria da Complexidade; em Lógica Formal no estudo de Modelos Computáveis e Decidibilidade; na análise de Raciocínio Automático para a Dedução; na Álgebra Computacional; na IA (Inteligência Artificial); bem como em “Machine Learning”.

Muito particularmente, entretanto, dei maior atenção aos usos das “Álgebras Computáveis e Recursivamente Computáveis” no campo da Lógica Matemática de Primeira Ordem em especial na Teoria de Demonstração Dedutiva e na Análise Inferencial associadas à Teoria da Prova (em Matemática) desenvolvidas no Cálculo Proposicional e dos Predicados.

Carlos Magno Corrêa Dias
29/09/2025

28 de set. de 2025

Completude e Corretude de Sistemas Algébricos.


Os conceitos de “Corretude” e “Completude” são fundamentais na Lógica Matemática e na Metalógica, que se aplicam a Sistemas Formais, incluindo aqueles que descrevem estruturas ou Sistemas Algébricos.

Enquanto a Lógica constrói argumentos válidos dentro de um Sistema, a Metalógica analisa as propriedades, estruturas e fundamentos do correspondente Sistema. A Metalógica trata da “Metateoria da Lógica. Na Lógica de Primeira Ordem, a Metalógica ajuda a entender “se o Sistema é capaz de provar todas as verdades matemáticas que ele expressa”. “Se a Lógica é a ferramenta que se usa para analisar argumentos, a Metalógica é a área que analisa a própria ferramenta”.

Para tratar da “Corretude” e da “Completude” ministrei, em 20 de setembro de 2010, na Sede Central do Câmpus Curitiba da TECNOLÓGICA (UTFPR - Universidade Tecnológica Federal do Paraná), a Palestra Técnica intitulada “Completude e Corretude de Sistemas Algébricos”.

DIAS, Carlos Magno Corrêa - 2025

Como proponente, organizador e coordenador do correspondente projeto da palestra em referência me preocupei, primeiramente, em distinguir os termos “Corretude” (em inglês “Soundness”) e “Completude” (em inglês “Completeness”).

Assim, evidenciei que a ‘Corretude’ se relaciona com garantia de que o sistema formal não prova nada que seja falso; ou seja, “tudo o que o sistema formal prova como teorema é, de fato, semanticamente válido (verdadeiro em todas as interpretações ou modelos consistentes com o sistema). Formalmente, tem-se, então, que “se uma fórmula é um teorema do sistema formal, então é semanticamente válida” de forma que a “Corretude” garante que o processo de dedução (prova) é confiável e preserva a verdade.

Já a “Completude” é a garantia de que o sistema formal é capaz de provar tudo que é verdadeiro em seu domínio; ou seja, “se uma fórmula é semanticamente válida (verdadeira em todas as interpretações), o sistema formal tem as ferramentas (axiomas e regras de inferência) para prová-la como um teorema”. Tem-se que “se uma fórmula é semanticamente válida, então é um teorema do sistema formal”. A “Completude” garante que o sistema de dedução é expressivo o suficiente para capturar todas as verdades do sistema.

A “Corretude” e a “Completude” são os pilares que conectam a sintaxe (o que se prova) com a semântica (o que é verdade) em qualquer Sistema Formal.

Na sequência levei em consideração onde são aplicados em Sistemas Algébricos pondo em evidência os Sistemas Formais da Lógica de Primeira Ordem, tais como a Lógica Proposicional e/ou a Lógica de Predicados.

Em síntese, a “Completude” é a propriedade dual da “Corretude”. “Um ‘Sistema Correto’ prova apenas verdades”. Um ‘Sistema Completo’ prova todas as verdades (que são deriváveis)”. Um Sistema ideal é Correto e Completo de forma que “tudo que ele prova é verdade, e tudo que é verdade pode ser provado”.

Carlos Magno Corrêa Dias
28/09/2025

27 de set. de 2025

Dom Pedro I e a Independência do Brasil.


Quando o assunto são as circunstâncias nas quais ocorreu o ato de “Independência do Brasil” existem, por certo, diversas controvérsias e muitas considerações a observar desde o questionamento sobre a “veracidade” do “GRITO DO IPIRANGA” até mesmo o reconhecimento do ambiente no qual a ação em si mesma ocorreu. Porém, o fato de Dom Pedro I, cognominado "o Libertador", "Pai da Pátria" e "Rei Soldado", ter declarado a “Independência do Brasil” e se tornado o primeiro Imperador do Brasil não há como negar.

No meu artigo “Sempre ordem para o progresso”, quando rememoro o dia 7 de setembro de 1822, data oficial da proclamação da Independência do Brasil, apresento algumas considerações sobre o bradar “Independência ou Morte!” de Dom Pedro I e sobre o próprio Dom Pedro I “considerado (tanto por seus contemporâneos - defensores ou opositores - quanto pela história posteriormente) como um dos governantes mais importantes na disseminação e propagação dos ideais liberais que possibilitaram ao Brasil e Portugal abandonarem os regimes absolutistas que cerceavam, em muito, o mais adequado desenvolvimento dos povos envolvidos”.

DIAS, Carlos Magno Corrêa - 2025

A história confirma que “Se nós [brasileiros] existimos como um corpo em uma Nação livre, se nossa terra não foi rasgada em pequenas repúblicas inimigas, onde apenas anarquia e espírito militar prevalecem, nós devemos muito à resolução que ele [Pedro I do Brasil] tomou em ficar entre nós, em realizar o primeiro grito por nossa independência. [...] Portugal, se fez-se livre da mais escura e degradante tirania [...] se goza dos benefícios trazidos por um governo representativo aos povos educados, ela deve a D. Pedro de Alcântara, cujas fatigas, sofrimentos e sacrifícios pela causa portuguesa lhe deram em alto grau o tributo da gratitude nacional".

O artigo em referência pode ser lido tanto na página da FNE (Federação Nacional dos Engenheiros) quanto na página do Seesp (Sindicato dos Engenheiros no Estado de São Paulo), estando disponível, respectivamente, nos endereços https://www.fne.org.br/index.php/artigos/7446-artigo-sempre-ordem-para-o-progresso e https://www.seesp.org.br/site/comunicacao/noticias/item/23512-sempre-ordem-para-o-progresso.

“Uma Nação soberana e livre reconhece sua história festejando seus exemplos e seus heróis”. Salve, Salve, Salve, a Independência do Brasil! “ORDEM por base e PROGRESSO por fim”.

Carlos Magno Corrêa Dias
27/09/2025

26 de set. de 2025

Incompletude Matemática.


Fui o proponente, organizador, coordenador e ministrante da Palestra Técnica intitulada “Teoremas da Incompletude Matemática”, apresentada na Sede Central do Câmpus Curitiba da TECNOLÓGICA (UTFPR - Universidade Tecnológica Federal do Paraná), em 12/09/2010, em um total de 2 (duas) horas.

DIAS, Carlos Magno Corrêa - 2025 

Na conferência em pauta fiz observar que os “Teoremas da Incompletude Matemática” são, na verdade, os Teoremas da Incompletude de Gödel, os quais, fundamentais em Lógica Matemática, foram publicados por Kurt Friedrich Gödel (1906-1978) em 1931, “estabelecendo limitações inerentes à capacidade de qualquer sistema axiomático formal consistente provar todas as verdades em seu domínio”. “Não existe um conjunto completo e consistente de axiomas a partir do qual toda a Matemática possa ser deduzida”.

Assim, demonstra-se que, em qualquer sistema formal consistente e recursivamente enumerável (o que significa que seus axiomas e regras de inferência podem ser listados por um algoritmo) que seja poderoso o suficiente para formalizar a Aritmética dos Números Naturais, haverá sempre proposições de valor lógico Verdade que não podem ser provadas (nem refutadas) dentro do próprio sistema. Em outras palavras: “existem verdades matemáticas que o sistema é incapaz de demonstrar; sendo, então, o sistema incompleto”.

Mas, como extensão do exposto precedentemente, tem-se, também, que um sistema formal consistente que satisfaça as condições anteriores “não pode provar sua própria consistência dentro de si mesmo”; ou seja: “para demonstrar que um Sistema Matemático (que inclui a Aritmética) não contém contradições (é “consistente”) se faz necessário usar um sistema formal ainda mais forte (que contenha mais axiomas ou regras) que não pode, por sua vez, provar sua própria consistência”; quer dizer: “a garantia definitiva de que um sistema é consistentemente não pode vir de dentro dele”.

“Nenhuma teoria formal suficientemente rica pode ser completa e consistente ao mesmo tempo. Se uma teoria é capaz de expressar a Aritmética básica, ela será incompleta, o que significa que sempre haverá afirmações verdadeiras que não podem ser demonstradas”. “Para que um sistema formal seja consistente (que não contenha contradições), é necessário que sua consistência não possa ser provada dentro do próprio sistema”.

Então, os Sistemas Lógicos são limitados pelos “Teoremas da Incompletude Matemática” e, portanto, incapazes de alcançar toda a intuição humana.

"Esta afirmação não pode ser provada neste sistema". “Se essa afirmação for verdadeira, ela não pode ser provada dentro do sistema (o que prova a incompletude). Se ela for falsa, então pode ser provada, mas isso levaria a uma contradição, mostrando que o sistema é inconsistente”.

Fica, então, estabelecido, “limites intrínsecos à capacidade dos sistemas formais em capturar toda a verdade matemática”.

Carlos Magno Corrêa Dias
26/09/2025

25 de set. de 2025

Os ODS ampliam as possibilidades dos ODM.


De 2000 até 2015 os ODM (Objetivos de Desenvolvimento do Milênio) foram trabalhados para melhorar a vida dos cidadãos. Em cada parte do planeta, em grupos corporativos ou individualmente, intenso trabalho foi realizado para se alcançar plenamente os ODM os quais no Brasil ficaram conhecidos como os “8 jeitos de mudar o mundo”.

Com os ODM a pobreza extrema diminuiu, se registrou um maior número de crianças nas escolas primárias, o acesso à água potável foi ampliado, reduziram-se as mortes de crianças, ampliaram-se os investimentos no tratamento e prevenção de doenças, cresceu a conscientização sobre a necessidade de todos contribuírem para a melhoria de vida das pessoas. Certamente, em 2015 o mundo ficou bem melhor que em 2000 e muito foi devido aos inúmeros trabalhos realizados em prol do alcance dos ODM.

Mas, o tempo passou e os desafios só fizeram aumentar com o crescimento das populações e das dificuldades para atender a todos em um mundo cada vez mais complexo. Os ODM se obrigaram transformação para se seguir na construção de um mundo cuja Sustentabilidade seja a razão do desenvolvimento e do progresso das Nações e da melhoria de vida das pessoas.

De 25 a 27 de setembro de 2015, foi realizada a Cúpula da ONU (Organização das Nações Unidas) sobre o Desenvolvimento Sustentável 2015, em Nova York (USA), quando se adotou a Agenda 2030 de Desenvolvimento Sustentável e foram assumidos os ODS (Objetivos de Desenvolvimento Sustentável) como ação global para dar sequência aos ODM. 

DIAS, Carlos Magno Corrêa - 2015

A Agenda Global Pós-2015, denominada de Agenda 2030 da ONU, aceita por unanimidade pelos 193 Estados-Membros das Nações Unidas, instituiu 17 (dezessete) Objetivos Globais, os ODS; os quais são formados por 169 metas e por um conjunto de 231 indicadores globais.

As “metas” são os compromissos específicos que os países signatários se propuseram a cumprir para concretizar a visão dos 17 ODS enquanto os “indicadores globais” fornecem as métricas para medir o progresso em relação às correspondentes metas.

A Agenda 2030 tem por principal objetivo transformações globais que possibilitem um mundo sustentável e resiliente para todos. No endereço https://brasil.un.org/pt-br/sdgs pode-se conhecer, em detalhes, cada um dos 17 ODS.

Considera-se a data de 25/09/2015 o início dos trabalhos em favor da Adenda 2030 e de alcance dos ODS. Então, neste 25/09/2025 são completados os primeiros dez anos de existência do correspondente plano global de ação para o Desenvolvimento Sustentável do mundo.

Tenho a satisfação de participar dos trabalhos para alcançar os ODS desde a implantação da Agenda 2030 da ONU contribuindo de forma diversificada, em especial, como Conselheiro no CPCE (Conselho Paranaense de Cidadania Empresarial), Conselho de Responsabilidade Social Corporativa (RSC) do Sistema Fiep (Sistema Federação das Indústrias do Estado do Paraná).

DIAS, Carlos Magno Corrêa
ODM (desde 2009) - ODS (desde 2015)

Carlos Magno Corrêa Dias
25/09/2025

24 de set. de 2025

Funções Recursivas Parciais.


As “Funções Recursivas Parciais” (base para se entender “o que é computável e o que não é”) seguem sendo conceito fundamental na Teoria da Computação e na Lógica Matemática dado constituírem forma poderosa e flexível de se descrever algoritmos, “capturando a ideia de que um processo de computação nem sempre precisa produzir um resultado para cada entrada”.

De forma simples e compendiada, as “Funções Recursivas Parciais” são funções que podem ser “parcialmente definidas”, ou seja, que “não necessitam ter um valor de saída para cada possível valor de entrada”.

“Funções Recursivas Parciais” são funções que não estão definidas para todos os possíveis valores de entrada; podendo “não terminar ou não produzir um resultado válido para determinados argumentos”.

São denominadas de "RECURSIVAS" porque podem ser definidas em termos de si mesmas, usando uma abordagem de recursão (baseia-se em valores da própria função para entradas menores); e, são "PARCIAIS" porque seu domínio de definição (o conjunto de entradas para as quais a função tem um valor de saída) pode ser um subconjunto próprio de seu domínio de entrada (“parcialidade”: a função pode não ter uma saída para todas as entradas; de forma que o processo de cálculo da função não termina).

Assim, as “Funções Recursivas Parciais” são aquelas que se chamam a si mesmas para resolver subproblemas menores e não estão definidas para alguns valores (ou seja, podem entrar em “um ciclo infinito” ou “falhar ao atingir um caso base”).

Para os Jovens Acadêmicos que cursavam sob minha orientação as disciplinas de Cálculo Diferencial e Integral no Câmpus Curitiba da TECNOLÓGICA (UTFPR - Universidade Tecnológica Federal do Paraná) ministrei, durante o mês de setembro de 2010, iniciando em 13/09/2010, o Curso de Extensão Universitária em "Funções Recursivas Parciais", com duração de 20 horas, cujo projeto de abertura foi, também, proposto, organizado e coordenado por mim.

DIAS, Carlos Magno Corrêa - 2025

Além da definição, propriedades e exemplos de aplicação, objetivando mostrar o quão importante são as Funções Recursivas Parciais, considerei a necessidade de se distinguir entre “Funções Totais” e “Funções Parciais” para se garantir terminação, correção e segurança (tanto em Linguagens Funcionais quanto em Teoria da Computação).

No curso em referência, inovador naquela época e há algum tempo considerado um marco, apresentei, ainda, a chamada “Tese de Church-Turing” segundo a qual se vem afirmar “que qualquer função que pode ser calculada por um algoritmo (em qualquer Modelo de Computação, como uma Máquina de Turing) é uma Função Recursiva Parcial”. No geral, “a classe das Funções Recursivas Parciais é considerada como a formalização precisa da noção intuitiva de um algoritmo”.

Uma vez mais apresentei elogios ao genial Alan Mathison Turing (1912-1954) aquele que é o “Pai da Computação Moderna” e um dos pioneiros da Inteligência Artificial.

Carlos Magno Corrêa Dias
24/09/2025